Long QT intervals corrected for rate (QTc) >480 to 500 milliseconds predispose to the polymorphic ventricular tachycardia torsades de pointes (TdP). Because QTc is shorter and TdP is less frequent in men than in women and because testosterone shortens ventricular repolarization, we examined the effect of hypogonadism and androgen deprivation therapy (ADT) on QTc and TdP risk.

We prospectively evaluated testosterone and related plasma levels in each man seen with TdP (n=7) over 19 months at a single university hospital (Hôpital Pitié-Salpêtrière, Paris, France, Commission nationale de l’informatique et des libertés No. 1491960v0, patients’ informed consent obtained). We then analyzed the European pharmacovigilance database (up to June 2017, URL: https://clinicaltrials.gov, Unique identifier: NCT03193138) searching for QTc/TdP adverse drug reactions (Medical Dictionary for Regulatory Activities terms: long-QT syndrome [LQT], ECG QT-prolonged, and TdP) associated with ADT, and we performed a cross-sectional analysis of the association between the International Classification of Diseases revisions 9 and 10 codes for LQT/TdP and hypogonadism in 1.1 million men in a US electronic health record cohort (up to November 2017, Vanderbilt University Medical Center, Institutional Review Board approval no. 171796).

Hypogonadism was diagnosed in 7 of 7 cases of TdP (Table). After correction of low testosterone levels, QTc shortened and there was no TdP recurrence. Three patients had spontaneous reversal of hypogonadism after resolution of a severe critical illness; 3 patients needed testosterone supplementation for chronic hypogonadism; and 1 patient died. LQT genetic screening was negative in 6 of the 6 tested patients.

The European pharmacovigilance database (http://www.adrreports.eu/fr/search.html) analysis identified 43 of 34 221 individual case safety reports of men with drug-induced (di) LQT (diLQT) and 15 of 34 221 with diTdP suspected to be attributable to ADT versus none (0 of 10 847) reported during testosterone replacement therapy. ADT included the following pharmacological classes of drugs: gonadotrophin-releasing hormone receptor agonists (leuprolide, buserelin, goserelin, triptorelin), gonadotrophin-releasing hormone receptor antagonist (degarelix), cytochrome-17 inhibitor (abiraterone), nonsteroidal androgen receptor antagonists (bicalutamide, flutamide, nilutamide, enzalutamide), and 5α-reductase inhibitors (finasteride, dutasteride). Disproportionality analysis showed higher reporting odds ratios (ORs) comparing ADT and testosterone for diLQT and diTdP (reporting OR, 3.75–∞, P<0.0001; reporting OR, 1.3–∞, P=0.03; respectively). Degarelix and abiraterone carried the highest reporting rate for diLQT (n=4 of 769 [0.52%] for degarelix; n=7 of 4723 [0.15%] for abiraterone) and diTdP (n=2 of 769 [0.26%] for degarelix; n=5 of 4723 [0.11%] for abiraterone) compared with other ADTs (n=32 of 28 729 [0.11%] for diLQT; n=8 of 28 729 [0.03%] for diTdP; both P<0.05).

Joe-Elie Salem, MD, PhD
Xavier Waintraub, MD
Carine Courtillot, MD
Christian M. Shaffer, BS
Estelle Gandjbakhch, MD, PhD
Carole Maupain, MD
Javid J. Moslehi, MD
Fabio Badilini, PhD
Julien Haroche, MD, PhD
Paul Gougis, MD
Veronique Fressart, MD, PhD
Andreas Glaser, PhD
Francoise Hidden-Lucet, MD
Philippe Touraine, MD, PhD
Benedicte Lebrun-Vignes, MD
Dan M. Roden, MD
Anne Bachelot, MD, PhD
Christian Funck-Brentano, MD, PhD

Key Words: androgen antagonists ◼ androgens ◼ antineoplastic agents ◼ hypogonadism ◼ men ◼ testosterone ◼ torsades de pointes

© 2018 American Heart Association, Inc.
Table. Details of the 7 Cases of TdP Identified With Hypogonadism

<table>
<thead>
<tr>
<th>Patient No.</th>
<th>Patient Age, y</th>
<th>Medical History</th>
<th>Clinical Presentation</th>
<th>Characterization of Hypogonadism*</th>
<th>Other Liable Drugs or Conditions for TdP†</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>72</td>
<td>Hypertension, normal EF, ischemic cardiomyopathy on β-blockers, Non-Langerhans, Langerhans cell histiocytosis infiltrating multiple organs with BRAF mutation (ECD) for 2 y treated by interferon-α</td>
<td>Respiratory distress and recurrent episodes of TdP requiring 6 cardioversions for post-TdP ventricular fibrillation</td>
<td>No sexual activity with no erection for the past 6–8 mo</td>
<td>Plasma electrolytes and troponins normal</td>
<td>ICD implanted</td>
</tr>
<tr>
<td></td>
<td></td>
<td>QTc=440 ms before ECD; progressive prolongation after ECD: QTc=550 ms concomitant to hypogonadism onset</td>
<td>QTc>550 ms while on long-term β-blocker</td>
<td>Clinical examination: bilateral hypotrophic testes, gynecomastia</td>
<td>Lung infection treated by spiramycin (but after first episode of syncope)</td>
<td>QTc normalization within 4 d and no TdP recurrence at 1.5 y despite vemurafenib introduction (ECD)</td>
</tr>
<tr>
<td>2</td>
<td>78</td>
<td>Paroxysmal atrial fibrillation on sotalol and digoxin, normal EF, progressive QTc prolongation over 4 y: QTc=460–480 ms</td>
<td>Syncopal TdP episodes 2 d after mitral valve replacement for endocarditis</td>
<td>Progressive apparition of sexual symptoms over the past 5 y, probably caused by late-onset hypogonadism</td>
<td>Normal electrolytes and no acute ischemia</td>
<td>Temporary pacing</td>
</tr>
<tr>
<td></td>
<td></td>
<td>QTC>600 ms, paroxysmal atrioventricular blocks</td>
<td>Mixed central and peripheral hypogonadism: Bio-T<0.1 ng/mL, FSH: 16.6 IU/L, LH: 10.6 IU/L</td>
<td>Bradycardia, paroxysmal atrioventricular blocks</td>
<td>Persistence of QTc=500 ms 2 mo after surgery</td>
<td>Testosterone administration at 3 mo with normalization of sexual symptoms and QTc with no TdP recurrence at 1 y</td>
</tr>
<tr>
<td>3</td>
<td>75</td>
<td>Pacemaker for paroxysmal bradycardia-tachycardia syndrome on amiodarone and bisoprolol (QTc=530 ms), ischemic cardiomyopathy, EF=35%–45%, moderate renal failure</td>
<td>Cardiac arrest on TdP 12 h after elective pacemaker replacement</td>
<td>Chronic clinical signs of hypogonadism, probably caused by late-onset hypogonadism</td>
<td>Normal electrolytes and no acute ischemia</td>
<td>Persistence of QTc=550 ms 1 wk after amiodarone and hydroxyzine withdrawal</td>
</tr>
<tr>
<td></td>
<td></td>
<td>QTC=660 ms</td>
<td>Peripheral hypogonadism: Bio-T<0.1 ng/mL, FSH: 44.9 IU/L, LH: 51.3 IU/L</td>
<td>Hydroxyzine before surgery, long-term amiodarone</td>
<td>Testosterone administration 1 wk after TdP with QTc shortening (=480 ms) and no TdP recurrence at 3 mo</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>90</td>
<td>Hypertension treated with diuretics, normal EF, borderline QTc (=460 ms), cured prostate cancer, temporal arteritis on corticosteroids</td>
<td>Syncopal TdP episodes requiring cardioversions in the context of paroxysmal atrial fibrillation and sepsis</td>
<td>Mild chronic clinical signs of hypogonadism</td>
<td>Severe hypokalemia (2 mmol/L)</td>
<td>Correction of hypokalemia, withdrawal of liable drugs</td>
</tr>
<tr>
<td></td>
<td></td>
<td>QTC>600 ms</td>
<td>Mixed central and peripheral hypogonadism; Bio-T: 0.2 ng/mL, FSH: 17.5 IU/L, LH: 20 IU/L</td>
<td>Sepsis treated by ciprofloxacin and fluconazole</td>
<td>Spontaneous incomplete reversion of Bio-T: 0.7 ng/mL, shortening of QTc (486 ms) within 10 d</td>
<td>Testosterone not given (history of prostate cancer)</td>
</tr>
</tbody>
</table>

(Continued)
In the electronic health record cohort, conditions or drugs leading to hypogonadism were associated with LQT/TdP (86 of 38,041 cases versus 649 of 1,082,891 controls; crude OR, 3.8 [95% confidence interval, 3.0–4.7]; age-adjusted OR, 4.8 [95% confidence interval, 3.8–6.1]). Men with hypogonadism secondary to endocrine conditions carried the highest association with LQT/TdP compared with ADT users and all other men (30 of 9,202 [0.33%] versus 56 of 288,899 [0.19%] versus 649 of 1,082,891 [0.06%], respectively, P<0.0001).

Taken together, these data provide consistent support for an association between hypogonadism in men and LQT/TdP. The association appears to be causal because correction of hypogonadism by testosterone replacement therapy can treat or prevent TdP and ADT can lead to LQT/TdP. These results provide strong justification for a clinical recommendation to investigate the possibility of hypogonadism when TdP occurs in men. Hypogonadism should be added to the list of risk factors for TdP, and an increased awareness should prompt correction of other TdP risk factors in men receiving ADT.

Our findings support the hypothesis that hypogonadism is a correctable and readily identifiable risk factor for TdP in men. There should be a high index of suspicion when symptoms such as erectile dysfunction, testicular hypotrophy, and hot flashes are present, particularly when the prevalence of hypogonadism is expected to be high such as in elderly men. It has been shown that hypothalamic-pituitary-gonadal axis physiology is dramatically altered during critical illnesses and after major surgery or brain injury and can lead to tran-

Table. Continued

<table>
<thead>
<tr>
<th>Patient No.</th>
<th>Patient Age, y</th>
<th>Medical History</th>
<th>Clinical Presentation</th>
<th>Characterization of Hypogonadism*†</th>
<th>Other Liable Drugs or Conditions for TdP†</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>63</td>
<td>Hypertension, prostate adenoma, familial history of sudden death, normal QTc, normal EF, paroxysmal atrial fibrillation</td>
<td>Multiple self-terminating TdP episodes in context of septic and hemorrhagic shocks</td>
<td>No preexisting signs of hypogonadism before shock</td>
<td>Shocks, extracorporeal membrane oxygenation</td>
<td>Spontaneous normalization of testosterone levels (Bio-T: 0.9 ng/mL) and QTc (440 ms) 1 mo after recovery from shock</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>QTc: 508 ms</td>
<td>Central hypogonadism triggered by severe acute conditions; Bio-T <0.1 ng/mL, FSH: 6.9 IU/L, LH: 10.7 IU/L</td>
<td>Ventricular arrhythmias and ischemia on inotropes requiring amiodarone</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>63</td>
<td>Hypertension, paroxysmal atrial fibrillation, systemic aneurysmal vasculopathy leading to multiple strokes complicated by epilepsy and hemiplegia, normal EF, normal QTc</td>
<td>Cardiac arrest caused by TdP leading to ventricular fibrillation (>15 cardioversions)</td>
<td>No preexisting signs of hypogonadism before TdP</td>
<td>Normal electrolytes and no acute ischemia</td>
<td>Septic death 6 d after admission for cardiac arrest</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>QTc =560 ms</td>
<td>Central hypogonadism triggered by acute severe conditions; Bio-T: 0.3 ng/mL, FSH: 6.4 IU/L, LH: 4.4 IU/L</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>72</td>
<td>Syncopal sinus node dysfunction with normal QTc requiring pacemaker, hypertension, normal EF, normal QTc</td>
<td>TdP (QTc=470 ms) while hospitalized for transient cerebral ischemia</td>
<td>No preexisting signs of hypogonadism before TdP</td>
<td>Normal electrolytes and no acute ischemia</td>
<td>Spontaneous normalization of testosterone levels (Bio-T: 1.5 ng/mL) and QTc (430 ms) within weeks of acute event resolution</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Recurrence of acquired prolonged QTc: 480 ms in context of endocarditis</td>
<td>Central hypogonadism triggered by acute severe conditions; Bio-T <0.1 ng/mL, FSH: 0.5 IU/L, LH: 1.4 IU/L (for endocarditis event)</td>
<td>ICD upgrading while changing pacemaker</td>
<td></td>
</tr>
</tbody>
</table>

Bio-T indicates bioavailable testosterone; ECD, Erdheim-Chester disease; EF, ejection fraction (left ventricle); FSH, follicle-stimulating hormone; ICD, implantable cardioverter-defibrillator; LH, luteinizing hormone; and TdP, torsades de pointes.

*Hypogonadic men with high FSH and LH were classified as having peripheral hypogonadism, whereas those with inappropriately normal or low FSH and LH were considered to have central hypogonadism. Normal values for adult men in our laboratory are as follows: FSH, 1.5 to 12.4 IU/L; LH, 1.7 to 8.6 IU/L; and Bio-T, 1 to 3.2 ng/mL. A progressive decrease in Bio-T normal values is expected with increasing age (up to 40% at 90 years of age).

†According to the CredibleMeds website (https://crediblemeds.org/).
sient functional hypogonadism; therefore, the distinction between transient hypogonadism in this setting and preexistent hypogonadism may be difficult. For these reasons, we postponed testosterone supplementation in patients 4 through 7 (sepsis, surgery, or stroke; Table), awaiting a spontaneous normalization of pituitary function. Late-onset hypogonadism has recently been defined as a syndrome in middle-aged and elderly men reporting sexual symptoms associated with higher cardiovascular mortality in the presence of low testosterone levels (eg, patients 2 and 3). In our case series, TdP did not recur after testosterone supplementation. The basic mechanisms are not completely defined, but preclinical studies show that testosterone increases the repolarizing potassium currents I_K and I_{Kr} and decreases the depolarizing L-type calcium current $I_{Ca,L}$.

ADT is a cornerstone of the treatment of prostate cancer. Among ADTs, the website crediblemeds.org currently lists only degarelix and leuprolide as possible risks for TdP, so further guideline updates may be needed for newer drugs such as abiraterone.

A limitation of the analyses of the pharmacovigilance database and the electronic health record is that the data come from uncontrolled sources. Nevertheless, the case series and the population analyses provide orthogonal validation for the causal, and treatable, relationship we postulate between male hypogonadism and TdP risk.

APPENDIX

Investigators

Marie Bretagne, Pauline Dureau, Valentin Saqué, Aïda Zarhizate-Ghoul, Clément Bourguignon, Monique Leban, Virginie Grouthier, Martino Vaglio

REFERENCES

