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BADILINI, F., T AL.: Heart Rate Variability in Passive Tilt Test: Comparative Evaluation of Autoregres-
sive and FFT Spectral Analyses. The dynamic response of the autonomic nervous system during tilting is
assessed by changes in the low (LF) and high frequency (HF) components of the RR series power spectral
density (PSD). Although results of many studies are consistent, some doubts related to different method-
ologies remain. Specifically, the respective relevance of autoregressive (AR) and fast Fourier transform
(FFT) methods is often questioned. Beat-to-beat RR series were recorded during 90° passive tilt in 18
healthy subjects (29 * 5 years, eight females). FFT-based (50% overlap, Hanning window) and AR-based
(Levinson-Durbin algorithm) PSDs were calculated on the same RR intervals. Powers in very low frequency
(VLF: < 0.04 Hz), LF (0.04-0.15 Hz), and HF (0.15-0.40 Hz) bands were calculated either by spectrum in-
tegration (FFT and ARy), by considering the highest AR component in each band (ARyp), or by summa-
tion of all AR components (ARap). LF and HF raw powers (ms?) were normalized by total power (%P} and
by total power after removal of the VLF component (nu). AR and FFT total powers were not different, re-
gardless of body position. In supine condition, when compared to ARpp and ARap, FFT underestimated
VLF and overestimated LF, whereas in tilt position FFT overestimated HF and underestimated LF. How-
ever, supine/tilt trends were consistent in all methods showing a clear reduction of HF and a less marked
increase of LF. Both normalization procedures provided a significant LF increase and further magnified
the HF decrease. Results obtained with ARy were remarkably close to those obtained with FFT. In con-
clusion, significant differences between AR and FFT spectral analyses do exist, particularly in supine po-
sition. Nevertheless, dynamic trends provided by the two approaches are consistent. Normalization is nec-
essary to evidence the LF increase during tilt. (PACE 1998; 21:1122-1132)

heart rate variability, spectral analysis, tilt test

Introduction ease,”® hypertensive cardiomyopathy,? and ven-
tricular tachycardia or fibrillation.'®*?

The main assumption of spectral analysis of
heart rate variability (HRV) is that, like many other
biological signals, the time series associated with
the heart rate is characterized by oscillatory pat-
terns of different frequency. Two main oscilla-
tions are present in HRV signals, namely, a low
frequency (LF) and a high frequency (HF) compo-
nent, which for the human heart are centered at
about 0.1 and 0.25 Hz, respectively. A third com-

Since the original work of Akselrod et al.,}
spectral analysis of beat-to-beat fluctuations in RR
interval has been applied to most of the patholog-
ical conditions related with the cardiovascular
and autonomic nervous systems. Studies in the lit-
erature include investigations on postmyocardial
infarction,®™® heart failure,® coronary artery dis-

Dr. Badilini is supported by a grant from Marquette Electronics
Inc., Milwaukee, W1, USA.

Address for reprints: Fabio Badilini, Ph.D., Hépital Lari-
boisiere, Service de Cardiologie du Prof. Coumel, 2, Rue Am-
broise Paré, 75010 Paris, France. Fax: 33-1-49-95-84-39; E-
mail: badilini@ aol.com

Received February 20, 1997; revised May 5, 1997; accepted
May 15, 1997.

3122 May 1998

ponent of very low frequency (VLF) centered
around 0.005 Hz is also often considered, al-
though its physiological origin is less clear.

In the context of short-term HRV signals (in
the range of a few minutes), two methods mainly
had been used. The first is based on the Fourier
transformation of the HRV signal obtained with

PAGE, ¥al, 9

o, S 1,

S ey




HEART RATE VARIABILITY

the fast Fourier transformation (FFT) algorithm.
The second method makes the further assumption
that an HRV signal can be described by an autore-
gressive (AR) model. After having successfully
verified such hypothesis, the power spectrum is
calculated on the basis of the AR model parame-
ters.

Both LF and HF powers can be calculated as
raw values (i.e., the power within each of the
bands)!3:8:10-1113-15 5r normalized with respect to
either the total power (TP) (fractional percent
power or %P)°'® or the total power minus the VLF
component (normalized unit or nu).”**17:*¢

The choice of raw or normalized units can
lead to different results®!® and then must be han-
dled carefully. In addition, a detailed review of
the literature shows that studies based on FFT
generally use raw powers (with the noticeable ex-
ception of Saul et al.?), whereas all AR related in-
vestigations consistently proposed normalization
(either %P or more recently nu). Due to this unex-
plained circumstance, it is often wrongly believed
that normalization may be specific to the method-
ology implemented. Thus, one may think that the
outcome of an experiment is strongly associated
with the method used for its achievement. As a fi-
nal dangerous consequence, the users of one or the
other method are often in confrontation,?®*' and
the whole significance of spectral HRV sometimes
is questioned.

Regardless of the normalization procedure,
the possible differences arising from the applica-
tion of AR and FFT-based power spectral density
(PSD) estimation have never been fully investi-
gated. The main goals of this study were: (1) to ap-
ply both AR and FFT spectral analysis in the con-
text of continuous ECG recording during passive
tilt test; and (2) to compare raw, fractional, and
normalized LF and HF powers obtained with the
two methods.

Methods
Study Population

The study population consisted of 18 young
healthy volunteer subjects (age 29 = 5 years, eight
females). No subject had a history of cardiac dis-
ease, hypertension, or diabetes mellitus. None had
a prior history of syncope or was receiving medi-
cations known to affect the autonomic nervous
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system. Inclusion criteria required normal physi-
cal examination, blood pressure, and resting ECG
in sinus rhythm. All volunteers provided a written
informed consent.

Data Acquisition and Analysis

All tests were performed at about 3:00 p.m.
All subjects were instructed to consume a light
lunch without alcohol or caffeine and to avoid
smoking. The temperature of the room was be-
tween 22° and 24°C. Subjects were placed on an
electrically driven tilt table, and the ECG was
monitored by a three-lead analog Holter recorder
(Marquette 8500, Marquette Electronics Inc., Mil-
waukee, WI, USA). During the entire procedure,
subjects were instructed to breathe concurrently
with an auditory signal sound at a fixed rate of 15
cycles/min (0.25 Hz). After approximately 15 min-
utes in the supine position, the table was rotated
to a 90° upright position that was maintained for
another 15 minutes. None of the volunteers expe-
rienced syncope or any symptoms.

Analog data was successively digitized at 128
Hz with a resolution of 10 bits (Marquette Laser
Holter system) and transferred to a personal com-
puter for analysis. ECG digital files were first ana-
lyzed by a system that identified each QRS com-
plex with first-derivative adaptive threshold
algorithm and estimated the apex of the R wave af-
ter parabolic interpolation.?” The continuous se-
ries of RR interval were then visualized, and stable
5-minute segments before and after the transition
were selected for spectral analysis. In particular,
post-tilt data segments always started within 30
seconds after tilt onset and range of interindivid-
ual variations was very small (in the range of sec-
onds). No premature beats were observed in the
complete set of ECGs; therefore, there was no need
for ectopies interpolation. PSD was performed
with the Burdick-DMI software (Burdick Inc., Mil-
ton, WI, USA).

FFT-Based Spectral Density

The FFT power spectrum was calculated with
the method of averaged Periodogram, also called
the Welch Periodogram.?>** According to this ap-
proach, the original time series to be analyzed was
first divided into a number of overlapping subseg-
ments. Percent overlap was fixed to 50%. After
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windowing and mean value (DC) subtraction, a
Periodogram for each of these subsegments was
calculated. At the end of the procedure, the N Pe-
riodograms were averaged. The size of each sub-
segment was fixed to 128; then, N was the number
of 128 RR sequences (50% overlapped) that could
fit in the selected 5-minute period and varied be-
tween 3 and 5 (in supine position) and between 3
and 6 (during tilt). Windowing was achieved with
a standard Hanning window, which included a
correcting coefficient to account for loss of vari-
ance.***% Power within specific bands was calcu-
lated by integration (area under PSD curve) ob-
tained with trapezoidal rule.

AR Spectral Density

The estimation of PSD with AR modelization
is based on two separate steps: the identification
of the model parameters and the calculation of the
spectrum on the basis of these parameters.?”-*®
The choice of the proper order is very important,
as it determines the shape of the power spectrum
and it is generally obtained with optimization cri-
teria.?® In this study, the identification of the
model was achieved with a recursive Levinson-
Durbin algorithm for the determination of model
parameters®® and Akaike criterion for the choice
of model order.?’ Linear detrending was per-
formed before AR modelization. To avoid FFT dif-
ferences related to preprocessing, we were careful
to verify the slope of the trend being very close to
0 (i.e., the detrend was essentially a mean value
subtraction) and cases that did not match this con-
dition were not included in the study.

With AR, the global spectrum can be decom-
posed in a number of spectral components, each
one characterized by a bell shape, i.e., by a peak
with its own central frequency. As opposed to
FFT, the power of a band is not calculated with in-
tegration but rather by adding all the single com-
ponents whose central frequencies are within the
band limits. Of note, all the power of a component
is assigned to the band its central frequency be-
longs to, even if the component itself may leak out
of the band range.

Despite the pictorial representations of many
articles implementing AR that systematically
show nice spectra with only three peaks, we often
obtain more than one LF or HF component (due to
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an effective complexity of the tachogram) or even
components with negative powers (due to an over-
estimation of the model order®?). In this situation,
the LF or HF central frequency corresponds to the
highest peak.

In this comparative study between two spec-
tral approaches, the AR power was calculated in
three different ways:

1. ARyp: Retain only the most important com-
ponent (the one with highest peak) within each
band.

2. ARap: Add all components within each
band (the AR gold standard).

3. ARyy: Integration (same way of FFT) of
overall PSD.

ARy is actually a poor way to use AR-based
spectral analysis, and we are not aware whether it
has ever been applied. The only rationale for its
use in this work is for comparison with FFT,
whose only way to calculate power is by spectrum
integration. Figure 1 shows a schematic example
of an AR spectrum.

msec?,

VLF
HF:

]

Hz

Figure 1. Schematic representation of autoregressive
power spectral density. In this example, five spectral
components are depicted, one in the very low frequency
(VLF) band (centered at 0 Hz), two low frequency
components (LF, and LF,), and two in high frequency
components (HF, and HF,). The LF and HF central
frequencies are indicated with dashed vertical lines and
correspond to the frequencies of highest peaks within
each bands (i.e., central frequencies of LF; and HF,,
respectively). The global spectrum is the sum of all five
components (not represented in the figure).
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Frequency Ranges for VLF, LF, and HF

Frequency ranges were as follows: VLF: =
0.04; LF: 0.04-0.15 Hz; and HF: 0.15-0.4 Hz.

Choice of Type of Tachogram

When dealing with HRV, two kinds of beat-to-
beat time series can be used??: the time series of
measured RR intervals considered to be equidis-
tantly spaced (by a beat event) and the time series
consisting of delta spikes nonequidistantly spaced
over the time axis (i.e., the distances between
spikes is the series of RR intervals). The spectra
obtained by using these two approaches are
named interval spectrum and spectrum of counts,
respectively. The main difference between the two
types of spectra resides into their frequency units;
in the case of interval spectrum the frequency di-
rectly obtained by FFT is cycles/beat (c/b)
whereas in the second case it is hertz (Hz). In the
first case the ¢/b units can be remapped to Hz by
dividing by the average RR interval. DeBoer et
al.*® clearly demonstrated that the autospectra of
the two methods are equivalent.

Many FFT-based studies have used the inter-
val spectrum.’?*37 In addition, due to the fact
that the AR equation is applied in the “beat” do-
main, all AR-based works systematically imple-
mented the interval spectrum.'®2838:3% Thys, we
used the interval spectrum.

Recently, a third type of tachogram that inter-
polates the nonequidistant RR interval had been
developed. This kind of procedure is particularly
suitable for long time series where the remapping
procedure from c/b to Hz becomes inappropri-
ate.***? To our knowledge, the interpolated
tachogram has never been applied for AR meth-
ods, as its implementation would have a great deal
of consequences on many parameters of AR mod-
elization and it cannot be considered very practi-
cal (even though the ESC/NASPE task force does
not exclude its implementation®?). For this reason,
resampled tachogram was not considered in this
work.

Length of Tachogram

In order to optimize the comparison, the FFT
and AR spectra were calculated on the same RR
sequences. In this regard, the AR method is much
more flexible as it can be applied to any data
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length, whereas the FFT-based method is limited
by the power-of-two constrain. Thus, the FFT-
based PSD was applied first and the exact number
of RR intervals used was stored. Then the AR ap-
proach was applied on exactly the same RR time
series.

Raw Powers and Normalized Powers

All raw powers (TP, VLF, LF, and HF) ob-
tained with FFT and the three AR approaches were
compared. As far as normalization was concerned,
both the fractional percent power (i.e., each com-
ponent is divided by TP) and the normalized units
(i.e., each component is divided by TP — VLF)
were applied. The LF/HF ratio (which is indepen-
dent of normalization) was also compared.

Statistical Analysis

Raw and normalized powers obtained with
FFT and AR approaches were compared with the
paired Wilcoxon test. Within each approach, dif-
ferences between supine and tilt values were also
compared with the paired Wilcoxon test. P < 0.05
was considered significant.

Results

Supine and tilt comparisons between FFT and
AR are summarized in Tables I and IT and Figure 2.

Supine Position (Table I)

Total power was not different between FFT
and AR (2,057 * 1,142 vs 2,111 * 1,163 ms?, re-
spectively). Of note, all three AR modes of calcu-
lation give the same value of TP.

Raw Powers

ARyp and AR,p mean VLF components were
significantly larger than the respective values ob-
tained with integration related methods (FFT and
ARp). For instance, the mean value of VLF raw
power with ARap was 809 * 674 versus 565 = 528
ms? with FFT (P < 0.01). Conversely, mean LF
raw powers provided by ARyp and ARsp were
smaller than those of FFT and ARy (529 = 654 vs
683 * 373 ms® for ARsp and FFT, respectively, P
< 0.01). In the supine position, raw HF powers
were less dependent on the spectral method; a sig-
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Table I.
Supine Position (RR = 922 = 75 ms)
FFr ARHP Anap AR|N

TP (ms?) 2057 + 1142 2111 £ 1163 2111 + 1163 2111 %= 1163
VLF (ms?) 562 + 528 898 + 880" 809 + 674" 643 + 472
LF (ms?) 683 + 373 489 + 3527 529 + 674" 632 + 354
HF (ms?) 738 = 612 609 + 532* 704 *+ 552 760 + 672

Fnu 47 = 14 40 + 15% 42 + 161 ah 2
LF%P T e 2 26 = 18t 28 = 191 30 + 10t
HFnu 48 + 13 44 + 16t 62 = 15% 50 = 12t
HF%P 36 = 14 29 + 12 34 = 14 35 + 14
LF/HF 1.15 + 0.68 1.16 = 1.26 1.04 = 1.23 1.02 + 0.53

*P < 0.01; t P < 0.05 when compared to fast Fourier transformation (FFT).

nificant difference was only observed when com-
paring FFT and ARyp.

Normalized Powers

Logically, fractional powers were consis-
tently smaller than the respective nu powers. For
fractional powers, since the denominator of nor-
malization (total power alone) is nearly identical
in FFT and AR, all comparisons followed the raw
powers tendency (for ARap, LF%P was smaller
and HF %P was equivalent, compared to FFT). On
the contrary, as they also involved a division by a
VLF dependent term, nu powers did not strictly

follow the respective raw powers results; in par-
ticular, HFnu in ARap (with higher VLF raw pow-
ers) became significantly larger than HFnu in FFT
(with smaller VLF raw powers).

ARy Versus FFT

In the last column of Table I, the data obtained
by using integration on global AR spectrum (AR)
is given. When compared to FFT, ARpy raw powers
did not show significant differences (closest to sig-
nificance was LF, P = 0.06). Only two of normal-
ized powers presented significance (LF%P and
HFnu).

Table II.
Standing Position (RR = 719 + 99 ms)

FFT ARup ARap ARy
TP (ms?) 1900 = 1701 1882 + 1361 1882 + 1361 1882 + 1361
VLF (ms?) 676 = 551 545 + 585 537 + 584 123 % 531
LF (ms?) 966 + 948 1170 + 1328 1176 £ 1327 902 = 660
HF (ms?) 190 + 264 102 + 87 116 = 88 177 = 208
LFnu 78 £ 9 81 % 13 g1 13 78 = 8
LF%P 50 = 14 55 + 27 85 =+ 27 48 + 12
HFnu 15 £ 6 ¢ |, B 13 = 8" 15 = 5
HF%P 9+4 6 &2 74 9+4
LF/HF 6.56 = 4.45 12.07 & '8.99 10.62 = 8.24" 6.47 = 3.7
* P < 0.01 when compared to fast Fourier transformation (FFT).
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Figure 2. Effect of tilting in raw and normalized powers. In each panel, vertical bars and vertical
lines indicate means and standard deviation of the power considered, respectively. Statistical
significance levels between supine and tilt positions are given. FFT = fast Fourier transformation;

HF = high frequency; LF = low frequency.

Tilt Position (Table II)

As in the supine position, no differences were
found when comparing total powers (1900 * 1701
vs 1882 *+ 1361 ms?, respectively, for FFT and AR).

Raw Powers

As opposed to the supine position, no signifi-
cant differences were found between FFT and AR.
However, FFT provided increased HF powers close
to significance when compared to ARyp and ARap
(190 * 64 vs 102 * 87 ms?, respectively, for FFT and
ARyp, P = 0.056). In addition, mean LF raw powers
provided by ARyp and ARptended to be larger than
those of FFT and ARy (1176 *= 1327 vs 966 *+ 948
ms? for ARp and FFT, respectively, P < 0.067).

Normalized Powers

As in the supine position, fractional powers
were smaller than respective nu powers. With re-
spect to FFT versus AR comparison, all normalized
powers followed the raw power tendencies. In addi-
tion, all the HF normalized powers of ARyp and
ARap reached statistical difference when compared
to FFT. For instance, mean value of HFnu with ARsp
was 13 * 8 versus 15 * 6 nu with FFT (P < 0.01).

ARy Versus FFT

No differences were observed, both in raw
and normalized powers.

Supine Versus Tilt (Fig. 2)

As typically observed with this test, the RR
interval significantly decreased (from 922 * 75 to
719 = 99 ms; P < 0.0001).

Raw Powers

The comparisons between supine and tilt po-
sitions provided homogenous results with all four
approaches. Specifically, mean TP and VLF pow-
ers did not change with all approaches. Raw LF
powers did increase in all methods, but signifi-
cance levels were consistently in the borderline
region (P = 0.09, 0.047, 0.042, and 0.084 for FFT,
ARyp, ARap, and ARy respectively). Conversely,
the decrease of raw HF powers was apparent P <
0.001 for all methods).

Normalized Powers

With both normalization procedures, LF
powers increased significantly (P < 0.0001 in all
methods), and all HF normalized powers de-
creased significantly (P < 0.0001 in all methods).
Figure 3 shows the FFT and AR PSDs of a subject
in the supine and tilt positions.

Discussion

This is the first study in which FFT and AR
approaches were applied to the same population
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in the context of passive tilt test. Two main find-
ings have to be highlighted: (1) within all fre-
quency bands, powers provided by the two meth-
ods can show substantial differences, especially in
the supine position; and (2) trends provided by
the two methods are equivalent.

Another important contribution is the di-
rect comparison between two methods of nor-
malization. In this regard, both normalized units
and percent of total power are able to highlight
the increase of LF. On the contrary, the decrease
of HF is already obvious in the raw powers and
simply is magnified with both normalization
procedures.

Supine
40000
TP: 1687
VLEF: 322
LF: 525

FFT HF: 806

o Nl
o1 02 03 o4 o5 HZ

TP: 1606
11286 VLF: 444
LF: 396
HF: 737

£ 0.1 02 03 04 05 Hz

Difference in Raw Powers: Tail Effect?

The understanding of the possible differences
between the two methods is not simple. However,
the striking similarity between FFT and ARpy sug-
gests that the differences may be the effect of the
way the power within a band is computed. With
FFT and ARy, the power is calculated by integra-
tion of the spectrum between the band lower and
upper limits. Conversely, with standard AR (ARyp
or ARap), the criteria of assignment is only based
on the central frequency value of a well-defined
oscillatory pattern. Thus, when two neighboring
components are considered, the tails of each com-
ponent could be assigned to one or another band

Tilt

TEi12359
VLEF: 182
LF: 1017
HE: 117

40000

0.1 02 03 04 05 Hz

TP: 1438
14363 VLF: 319
LF: 976
HF: 101

Q
01 02 03 04 o5 Hz

Figure3. Fast Fourier transformation (FFT) and autogressive (AR) power spectral densities (PSDs)
in a representative subject. Upper and lower panels show the FFT-based and the AR-based PSDs
(left side for supine position and right side for tilt position). The typical smoothed shape of the
AR spectrum is apparent. Raw powers of total power (TP), very low frequency (VLF), low frequency
(LF), and high frequency (HF) are also given for all four plots (all values in ms®). AR data have
been obtained by adding all components (ARap). In this subject, VLF decreases between supine

and tilt.
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Power density

Comp |

Frequency

Figure 4. Schematic representation of component tail
effect. The power density of two neighboring
components (Comp1, Comp2) are shown. Vertical lines
mark the cut-off limits of two adjacent bands (Band1,
Band2). The dashed line area indicates the tail of
Comp1 outside the upper limit of Band1, and the solid
line area identifies the tail of Comp2 outside the lower
limit of Band2. FFT and AR would assign dashed line
area to Band2 and solid line area to Band1, whereas
standard AR would have done the opposite. The
position of the adjacent cutoff and the respective size of
the neighboring components determine the magnitude
of the tail effect.

depending on the method used. A schematic rep-
resentation of this situation is shown in Figure 4.

In the supine position, VLF is a dominant
component (Table I). Then, with FFT and ARy the
large tail of VLF is lost, resulting in a smaller
value. Consequently, the neighboring LF is largely
overestimated by FFT and AR integration. Total
powers (which are not concerned by the power in-
tegration mode) are identical. The typical supine
spectrum is idealized in Figure 5.

In the standing position, LF becomes predom-
inant, particularly with respect to HF (Table II),
which is then overestimated by FFT and ARy.
The typical spectrum obtained in the standing po-
sition is idealized in Figure 6.

In order to better quantify this phenomenon,
we calculated the percent changes of raw powers
between AR,p and ARy. In the supine position,
15 subjects had a larger ARy LF raw power
(global mean value of increase: 15% * 17%) and
17 subjects had a smaller AR;y VLF raw power
(global mean value of decrease 23% =* 23%). In
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VLF

LE HF

Hz

Figure 5. Schematic representation of typical supine
position spectrum. Vertical line indicates the cutoff
between very low frequency (VLF) and low frequency (LF)
bands. The overestimation of LF component by FFT and
ARy is the result of the big VLF tail (solid line area],
which by integration is assigned to the LF band. HF =

high frequency.

the standing position, 16 subjects had a larger
AR HF raw power (global mean value of in-
crease: 39% = 44%). All other percent changes
(i.e., HF in supine, VLF and LF in standing) did
not show consistent variations in one specific
direction.

msec?

LE

VLF

L

Figure 6. Schematic representation of typical tilt
position spectrum. Vertical line indicates the cutoff
between low frequency (LF) and high frequency (HF)
bands. The overestimation of HF component by FFT and
ARy is the result of the big LF tail, which by integration
is assigned to the HF band. VLF = very low frequency.

Hz

May 1998 1129

B T T T R TR T A



BADILINI, ET AL.

Trends

Despite the observed differences in the raw
powers, the dynamic information provided by the
two approaches is consistent. Specifically, HF
power significantly decreases following passive
tilting, either by considering raw or normalized
powers. On the contrary, the increase of raw LF
power is less consistent, being close to signifi-
cance with all methods, and becomes apparent
only after normalization (Fig. 2).

These results are in accordance with findings
of Montano et al.'® using an AR approach. What
we can add is that the less evident increase of LF
is not related to the spectral method. The patho-
physiological explanation of both LF and HF com-
ponents and the speculations over sympathetic
excitation versus vagal withdrawal during tilt are
not the purpose of this study; however, we can
highlight that the main effect of tilt seems to be the
reduction of HF (which in the average is reduced
by 6x) rather than the increase of LF (which in the
average is only doubled).

Both methods did not show evidence of any
change in mean VLF powers following passive
tilting, thus indicating that this component should
not play a role in this kind of test. In addition, the
individual behavior was rather erratic, as raw VLF
increased in 10 (of 18) subjects and fractional VLF
increased in 13 subjects. A detailed review of the
literature did not provide quantitative data on the
behavior of this component during orthostatic
test, either because it was totally ignored,***5*®
considered as pure direct current component,” or
because raw data were not provided.*® The recent
ESC/NASPE document addresses a note of caution
on the physiological explanation of VLF?%; yet, in
the only two quantitative examples available from
two figures, the VLF power showed an apparent
decrease.

Finally, total powers are also unchanged by
tilt maneuver. This finding is in accordance with
some studies’®'® and is in disaccordance with
others.!®'? Nevertheless, by eliminating the four
largest outliers, the (recalculated) total powers
were 1,852 + 832 and 1,207 * 543 ms? (for supine
and standing positions, respectively), and the
comparison became significant (P = 0.02). These
values are much closer to those obtained by Pa-
gani et al.’® on a similar population and suggests
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how discordances in literature may be associated
to the different populations and to the large inter-
variability between subjects.

Normalization Procedures

In the most general situation, the need for
normalization is essentially justified by the
large differences that can be found in the total
powers being compared. This can be particu-
larly valid when the populations analyzed in-
clude different pathological groups®’:*?; how-
ever, even within the same population and with
a simple maneuver such as tilt, large interindi-
vidual variations in power can lead to con-
founding interpretations. In spite of the lack of
difference observed in the total powers (see pre-
ceding paragraph), our data also indicated the
presence of a large range of total power
(486-5049 and 202-7276 ms? for supine and
standing positions, respectively), as shown by
the standard deviations of Figure 2.

With respect to different procedures, nor-
malization by the total power alone clearly
supplies smaller values than normalization
over total power minus VLF (Fig. 2, Tables I
and II). Despite this legitimate difference, both
normalization procedures were able to high-
light the decrease of HF and most of all the in-
crease of LF. The normalization to choose can-
not be restricted to that which better denotes
the supine/tilt changes but rather depends on
the interpretation we want to give to the VLF
power. If the power within this band is really of
nonphysiological origin and comes from arti-
factual components,’® the normalized units
may be preferable. If, on the contrary, VLF may
contain information, its use in the normaliza-
tion procedure may introduce a bias. Given the
results of this work, which did not suggest a
physiological explanation of VLF in the tilt
test, normalized units seem to be the right
choice and the introduction of possible biases
should be excluded.

Conclusion

AR and FFT spectral analyses provide different
quantitative results. Differences between the two
methodologies may depend on subject position and
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may be explained by the mode of spectrum integra-
tion specific of each approach. Nevertheless, the
qualitative assessment of sympathovagal changes in
the context of passive tilt testing is accurately iden-
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