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Abstract 

We propose a new approach to fully automatic ECG 

wave extraction and morphology tracking. It is based on 

Generalized Orthogonal Forward Regression (GOFR), 

which allows decomposing a one-dimensional signal into 

a set of appropriate parameterized functions. Two 

applications of GOFR to ECG modeling are presented. 

First, in order to delineate ECG characteristic waves, we 

make use of a specific function, called the Gaussian Mesa 

function (GMF). Secondly, we track the evolution of the 

T-wave morphology by introducing a Bi-Gaussian 

function (BGF).  

The approach was validated on three experimental 

settings; the results confirm that the combination of 

GOFR and of an appropriate parametric function is 

remarkably efficient for ECG wave modeling. 

 

1. Introduction 

Automatic ECG analysis is a significant topic in 
biomedical signal processing; several algorithms have 
been proposed, based on different techniques (eg.[1-2]). 
The approach described in this paper is a machine-
learning algorithm that decomposes the ECG into a sum 
of parameterized functions specifically designed to fit the 
cardiac characteristic waves. Therefore, it combines the 
power of a machine-learning algorithm with the insight of 
the experts through the design of specific modeling 
functions. The first part of Section II is devoted to the 
mathematical baseline of the GOFR (Generalized 
Orthogonal Forward Regression) learning algorithm, used 
for fitting parameterized functions to the ECG. 
Subsequently, we describe two types of parameterized 
function: GMF (Gaussian Mesa Function) and BGF 
(BiGaussian Function) that stem from experts knowledge 
and are used together with GOFR. Results are presented 
in section III on two databases devoted to three specific 
topics: (i) wave delineation with GMF, (ii) T wave 
morphology changes during Sotalol intake, and (iii) T 
wave morphology characterization of LQT patients with 

BGF functions. Discussion and conclusion are 
subsequently presented.   

2. Methods 

2.1. Generalized Orthogonal Forward 

Regression 

GOFR is an extension of the Orthogonal Forward 
Regression algorithm originally designed for regression 
and feature selection. Given a signal s, a parameterized 
function Gw, and a predefined parameters N, GOFR aims 
at finding N vectors of parameters {Wi}i=1..N such that the 
sum of the N functions {GWi}i=1..N is a good model of s. 
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where   !s  is the model of s.  
A full mathematical description of the procedure, 

together with a demonstration of the efficiency of GOFR 
as compared to standard algorithms can be found in [3] 
but we provide here an overview of the procedure for a 
1d signal. First, we construct a library of d functions GWi 
with various values of the parameter vector Wi.  
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The model   !s  is obtained through N iterations of the 
following procedure (Figure 1):  

(i) select the function in D that is most correlated to s : 
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best fits the signal s. This is 

performed by minimizing the mean squared error 

function J computed between s and 
  
G

W
1

. Since J is non 

linear with respect to the parameters, a second order non-
linear optimization iterative algorithm is used for the 
minimization step. 
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(iii) orthogonalize the functions of the library D and 

the signal s with respect to the tuned function 
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step prevents from choosing further in the procedure a 

function 
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 that is close to the previously chosen 

functions.  
In order to construct a model composed of N functions 

G, the above procedure is iterated N times.  

    

Figure 1: Overview of the 3-step procedure performed at 
each iteration of the GOFR algorithm. 

2.2. Wave delineation 

Wave delineation of a given heartbeat consists in (i) 
locating the characteristic waves (P, QRS, and T) and (ii) 
positioning markers at the beginning and at the end of 
these waves. To address the first problem, we designed a 
family of specific parameterized functions GW named 
Gaussian Mesa Functions (GMF); they are able to model 
the standard shapes of typical ECG waves. Each function 
is composed of two half-Gaussian functions linked by a 
horizontal segment (Figure 2). The variability in shape of 
such a function is large since it can model either a R 
wave, a ST abnormal segment, or a T wave, depending 
on the value of its 5-dimensional parameter vector W=[µ, 
!1, !L, !2, A]T, where µ is the location of the function in 
time, !1 and !2 the widths of the first and second 
Gaussian functions respectively, !L the length of the 
horizontal segment, and A the amplitude of the GMF. 

 

 

Figure 2: A Gaussian Mesa Function (GMF) is a 5-
parameter function composed of two half Gaussian 
functions linked by a horizontal segment.  

When applying the GOFR algorithm together with 
GMF on a heartbeat, the obtained model is a sum of N 
GMFs, each of which models a specific part of the 
heartbeat. The purpose of the method is to model each 
wave of the heartbeat by a single GMF. Thus, for wave 

delineation, we decided to use N=6 in order to model the 
5 characteristic waves and possibly a biphasic wave, or 
noise (Figure 3). 

 

Figure 3: Obtained model with GOFR together with 
GMF. Each GMF is assigned a label with a medical 
significance. 

The N GMFs of the model are subsequently assigned a 
medical label P, R, T, or possibly X if the GMF does not 
correspond to any of the ECG waves. This task is 
performed by three neural network classifiers (NNC). 
Each NNC has been trained to recognize one of the three 
labels from the GMF parameter vector. The output of 
each NNC is the probability for a given GMF to model 
the wave related to this NNC. Thus for each GMF, this 
process provides three probabilities: one per label.  The 
label with the highest probability is assigned to the GMF 
(see example Table 1).  
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P-NNC 0.00 0.00 0.00 0.99 0.00 0.00 
R-NNC 0.99 0.00 0.15 0.00 0.00 0.00 
T-NNC 0.05 0.91 0.05 0.00 0.31 0.00 

Table 1: Example of the probabilities obtained by the 3 
NNCs on the above example for each GMF of the model. 
Each GMF is assigned the label of the NNC that outputs 
the highest probability (boldface figures).  

For each wave, the markers for the beginning and the 
end of each wave are set according to the parameters of 
the GMF associated to that particular wave:  
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In case of multiple GMFs being associated to a single 
wave, the markers are computed according to the relative 
position of the GMF [4].  

2.3. T wave modeling  

The T wave does not exhibit the same variability in 
shape as in the previous study; in particular, the top of a 
T wave is never flat, but amplitudes can be different from 
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one side to the other, as is the case for abnormal ST 
segments for example. Thus, the parameterized function 
used here consists of two half-gaussian functions with no 
flat segment and with different amplitudes W=[µ, A1, !1, 
A2, !2]

T (Figure 4); in the following, this function is 
referred to as a Bi-Gaussian function (BGF). 

 

Figure 4: The bi-Gaussian function (BGF) is a 5-
parameter function made of two half-Gaussian functions 
with different amplitudes 

3. Results 

The efficiency of the GOFR algorithm was tested on 
two databases. The first one (Sotalol database) has been 
described in [5]. It contains 12-lead ECG Holter 
recordings taken on 38 healthy subjects for 3 three 
consecutive days. On the first day, the subjects were 
drug-free; they took a single dose of Sotalol (160 mg) on 
the second day; a double dose (320mg) was delivered on 
the third day to a subset of the initial group. From each 
24 hour ECG, a snapshot of 10 seconds was 
automatically extracted every 10 minutes using the 
Antares software (AMPS llc) [6]; a representative beat 
was subsequently computed from each 10-second 
snapshot. QRS onset/offset, and T wave offset were 
manually assigned by a cardiologist to these 
representative beats. 

The second database (LQT database) is composed of 
100 ECGs from patients with confirmed genotype of 
long-QT syndrome (50 LQT1 and 50 LQT2) [7].  

3.1. Wave delineation 

GOFR combined with GMF was used to automatically 
annotate the Sotalol Database. Since the representative 
beats are 12-lead ECG, a preprocessing step was 
performed to extract a 1-d signal from the 12 channels. It 
consists in a Principal Component Analysis computed on 
the 8 independent leads, the resulting 1-d signal being the 
projection of the original heartbeat onto the principal 
component.  

According to the methodology discussed above, the 
heartbeat was modeled by GMFs, and QRS onset, T 
offset markers were set and compared to the reference. 
The results are summarized in Table 2 and a scatter plot 

for QT estimation is shown on Figure 5. 
  

 QRSon Toff QT 
Size of the database 6377 6377 6377 
Number of markers 6377 6377 6377 
Mean error (ms) -9.4 14.7 24.3 
Std (ms) 7.6 10.4 11.9 

  Table 2 : Wave delineation performance for the Sotalol 
database.  

 

Figure 5: Scatter plot of the estimated QT values 
measured by the automatic delineation versus the QT 
intervals from manually annotated heartbeats. The 
correlation coefficient is R2=0.92. 

3.2. T wave analysis 

The performances for the T wave analysis were first 
estimated on the Sotalol database. A 1-d representation of 
the T-wave was extracted from the 12-lead ECG using 
the delineation of the T-wave presented above and a PCA 
from the 8 independent signals of the ECG. Each T-wave 
was subsequently modeled by a single BGF and its 
morphology was described by the values of the 
parameters of the BGF (Figure 6 & 7, Table 3) [8,9].  

 

Figure 6: (left) T waves after intake of 320mg of Sotalol. 
(right) Corresponding BGF models.  
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Figure 7: Trend of BGF parameters !1 and !1/ !2 for 
double dosing of Sotalol (320 mg) paired to baseline 
model. (Left) Trend for parameter S1: on each box, the 
central mark is the median, the edges of the box are the 
25th and 75th percentiles and the whiskers extend to the 
most extreme data points. (Right) ratio of !1 to !2. 

 
 Baseline Single 

Dose 
Double 
Dose 

Time peak  2h50±47’ 2h44±52’ 
µ + 2 !2 (ms) 346±28 420±32‡ 441±37‡! 
!1 (ms) 68±16 99±19‡ 116±24‡! 
!2 (ms) 30±5 40±13‡ 45±11‡! 
!1/ !2 2.3±0.8 2.6±0.6 2.6±0.5‡ 

Table 3: Results for BGF parameters at the peak Sotalol 
concentration [Extramiana]. (‡ 

p<0.05 vs baseline,  
! p<0.05 vs Single Dose). 

Secondly, the performance of the algorithm was 
validated on the LQTS database. Here again, the 12-lead 
representation of the T-waves was projected onto a 1-
dimensional space by PCA, and the obtained 1-d T-wave 
was modeled by a single BGF [9]. The parameter vectors 
of the models were compared to baseline ECGs from the 
Sotalol database (Table 4). 

 
 Control  LQT1 LQT2 
Number of ECGs 2351 50 49 
µ + 2 !2 (ms) 338±24 401±67 410±64 
!1 (ms) 52±6 61±12‡ 69±21‡ 
!2 (ms) 29±3 29±7 35±13‡! 
!1/!2 1.8±0.3 2.4±1.7‡ 2.1±0.8‡ 
A1 (µV) 1073±361 929±431‡ 757±502‡! 
A2 (µV) 1165±406 974±502‡ 761±378‡! 

Table 4: Result for BGF parametres for LQT database    
(‡ 

p<0.05 vs baseline, ! p<0.05 vs Single Dose) 

4. Discussion and conclusions 

The GOFR algorithm is an efficient algorithm for ECG 
modeling. Together with specific functions (GMF or 
BGF) it provides highly informative models whose 
parameters can be used to track the morphology of the 
waves. In wave delineation, the accuracy of this method 

is high. The stability of the markers can be estimated via 
the standard deviation of the error and is in a satisfactory 
range.  The mean value of the error on the markers might 
be corrected by a more accurate choice of the marker 
position estimation from GMF parameters. Nevertheless, 
the QT estimated interval is highly correlated to the 
expert’s reference. In T-wave modeling, in both 
databases, the values of the parameters are strongly 
related to the shape of the T-wave. Therefore, GOFR 
with appropriate parameterized functions can be used 
efficiently for fully automatic wave morphology 
characterization and tracking. 
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